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1. INTRODUCTION

The theory of polynomial spline functions interpolating prescribed data at
knots x I < X2 < ... < Xk has proved amenable to extension in several directions.
Schoenberg [15] initiated the departure from polynomial splines by considering
trigonometric interpolating splines. Greville [8] was the first to study splines
associated with a general linear differential operator interpolating simple data.
Ahlberg, Nilson and Walsh later supplemented Greville's treatment in [1].

On the other hand, Ahlberg and Nilson [2] introduced polynomial splines
interpolating arbitrary derivatives at the knots {x/}/ (Hermite-Birkhoffdata),
and Schoenberg [16] subsequently refined this theory. Later authors, e.g.,
Karlin and Ziegler [11] and Schultz and Varga [17], considered splines associ­
ated with a general linear differential operator, interpolating consecutive
derivatives (Hermite data).

The purpose ofthis paper is to investigate splines corresponding to a general
differential operator which interpolate general data, including, e.g., Hermite­
Birkhoff data. To accomplish this, we employ a Hilbert space approach
similar to that found in Golomb [6] and Anselone and Laurent [3]. The
advantages of this approach are that existence and uniqueness results are
clearly distinguished, characterization of the splines is facilitated, and explicit
computational algorithms, involving inversion of positive definite m-banded
matrices, are obtained. In addition, we carry out the theory for data prescribed
at an infinite number of points, determine the best approximation of linear
functionals in the sense of Sard, and investigate splines where interpolation is
relaxed to inequality constraints on certain linear functionals. Hilbert space
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30 JEROME AND SCHUMAKER

techniques have also been employed by Atteia [4], de Boor and Lynch [5], and
Sard [13], but not for the cases ofthe general data considered here.

We now define the notion of an Lg-spline. Let L be a linear differential
operator of the form

m (d)l
L= ~al dx '

J=O

We denote by :ff2
m(a, b) the Hilbert space of real-valued functions

f E Cm- 1[a,b], such thatf(m-l) is absolutely continuous and Lf E 2 2(a, b), with
the inner product

(f, g)J'f2m = ;~ f(jl(a) g(j)(a) +I: LfLg.

Suppose A = {,\h n is a sequence of continuous linear functionals, linearly
independent on :ff2m, and suppose r = (r1or2' ..., rn) E En.

DEFINITION 1.1. A functions E :ff2
mis called anLg-spline interpolatingr with

respect to A provided it solves the following minimization problem:

IILsIl..W2 = min IILfII..W2'
feU(r)

(1.2)

We have chosen the terminology "Lg-splines" since it has been customary to
call polynomial splines interpolating Hermite-Birkhoff data g-splines, and
splines associated with a general differential operator, L-splines.

The variational problem (1.2) can also be considered in 2i9t), provided
the coefficients of the differential operator (Ll) are sufficiently regular. In this
case, a solution of the minimization problem is referred to as a natural Lg­
spline. In the following we shall be concerned primarily with the case of an
interval [a,b].

2. EXISTENCE AND UNIQUENESS OF Lg-SPLINES

IfL is a linear differential operator as in (1.1), then it is easily seen to define a
bounded linear operator from :ff2mea, b) onto 2 2(a, b). Its null space N = NL is
of dimension m and is spanned by functions {uihmin Cm[a,b]. We formulate
the main result of this section in

'THEOREM 2.1. There exists an s E :ff2msatisfying (1.2). A function s E U(r)
solves (1.2) ifand only if

f: LsLg = 0 for every g E U(O). (2.1)
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Moreover, any two solutions of(1.2) corresponding to a prescribed r E E" differ
by afunction in N, and (1.2) possesses a unique solution ifand only ifN n U(O)
=(0).

Proof In view of the linear independence of the {Aih", the closed flat U(r)
of (1.2) is a (non-empty) translate of the subspace U(O) = {fE .Yf/zm:Ajf= 0,
l<j < n}. The facts that U(O) is closed and N is finite dimensional imply that
U(O) + N is closed. Since L is onto, it follows from Lemma 2.1 of [6] that
LU(O) and thus LU(r) is closed, and hence the minimization problem (1.2)
possesses a solution. Viewing (1.2) as a projection problem in 2 z, the ortho~

gonality relation (2. I) is immediate.
Conversely, if (2.1) holds for some s E U(r), then it follows easily that s is a

solution of (1.2). Indeed,

J(Lf)z= J(Ls)Z+2 J(Ls)(Lf-Ls) +J(Lf-Ls)2

= J(LS)2 +J(Lf - Ls)Z

for everyfE U(r), and thus f(Ls)2 < fLff for allfE U(r). Clearly (2.1) implies
that any two solutions of (1.2) differ by an element of N, and hence (1.2)
possesses a unique solution if and only if N n U(O) = (0).

COROLLARY 2.2. The class ofLg-splines

!7 = !7(L,A) = {s:ssatisfies(1.2)forsome r = (rI' ..., rll ) E E"}

is afinite dimensional linear subspace of.Yf/2m, with dim!7 = n + dimN n U(O).
Moreover, Nc!7.

Proof To show linearity, let sand sbe splines in!7 interpolating rand P, and
let s* = ys + ys, where y, yare real. We claim: s* satisfies (1.2) for r* = yr + yr.
Indeed, s* E U(r*), and by (2.1), ifg E U(O),

JLgLs* = y JLgLs +YJLgLs = O.

But then, by Theorem 2.1, s* satisfies (1.2) for r*.
We now show the finite dimensionality of!7 by constructing an explicit basis.

Let Sj be a solution of (1.2) corresponding to r = thejth row of the n x n
identity matrix, i.e.

(2.2)

LEMMA2.3.Supposedim(N n U(O» = d,andlet {v.}/beabasisforN n U(O).
Then dim!7 = n + d, and thefunctions{si}I" U {Vj}I dform a basisfor!7.
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Proof. Let S E f/, and set LI = S - 2:7=1 (AIs)SI' Clearly LI E U(O) n f/, and
thus, by (2.1),

But this implies that LI EN n U(O), and hence

" d
s= 2: (AIs)SI+ 2: YIVI

1=1 1=1

for some {Ylh d• We now establish the linear independence of {SI}I" U {vlh d
•

Suppose
n d

() = 2: f31 SI + 2: YI VI = O.
1=1 1=1

Then 0 = Ai) = f3J> 1 <.j <. n, and since the {vlhd are linearly independent, we
also have Yl = 0, 1 <.j <. d. The fact that Nc f/ follows trivially from the
characterizing orthogonality relation (2.1). This completes the proof of
Corollary 2.2.

Following [16] we call the interpolation problem (1.2) poised with respect to
L provided that N n U(O) = (0). In this case there exists a unique Lg-spline
interpolating r with respect to A, and Lemma 2.3 asserts that f/ is ofdimension
n and is spanned by the {slh n themselves.

3. CHARACTERIZATION OF Lg-SPLINES INTERPOLATING EHB DATA

The class of linear functionals

2(m) = {A:Af= :~~ f>(I)(X)dl1'l(X), 11'1 of bounded variation}

provides an example of the type of linear functionals which are suitable for A.
For this section it is convenient to single out two special choices of A. We say
that A generates a Hermite-Birkhoff (HB) interpolation problem, if to each
Al E A there corresponds a pair (XI, jl) such that Ad= j(Ji)(XI), where
a <. XI < band 0 <.jl <. m - 1. On the other hand, if for each Al EA,
Ad= 2:T:J (XUj(J)(XI), where (Xij are real numbers, we say that A generates an
Extended-Hermite-Birkhoff problem (EHB) provided that the vectors
(Xl = ((Xi ,0, (Xi,1> ... , (Xi,m-l) defining linear functionals Al associated with the
same point are linearly independent. It is easy to see that an (HB) interpolation
problem is a special case of an (EHB) interpolation problem. We also remark
that any n linear functionals defining an (EHB) interpolation problem are
linearly independent over .Yt'2m by virtue of their form and the assumption on
the oc/s.
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The main result of this section is Theorem 3.6 which characterizesLg-spHnes
interpolating EHB data. The key tool for this purpose is the orthogonality
relation (2.1). We begin by defining a knot. An Lg-spline s interpolating
r = (r1>r2, ..., rn) with respect to A = {Ai}ln is said to have a knot at the point
x E [a,b], provided some Ai E A involves evaluation of some jth derivative,
o<,j <, m -1, at x. We now show that any solution s of (1.2) corresponding
to EHB data A satisfies L*Ls(x) = 0 in the intervals between its knots
a ~ XI < X2 < ... < X" <, b, whereL* is the formal adjoint ofL defined by

m

L*f = L (-l)J (ad)(j)·
J~O

Let g E Cc"'(Xi,XHI)' Then g E U(O) automatically, and hence (2.1) yields

f b fXi+l0= LsLg = sL* Lg,
a Xl

upon integration by parts. Itfollows by well-known arguments thatL*Ls(x) = 0
on (Xi,Xi+I)'

Next we prove that Ls(x) = 0 for a < X < Xl and x" < x < b. First we notice
that the above discussion applies equally well to show that L*Ls(x) = 0, and
thus that Ls is continuous for 0 < X < Xl and x" < X < b. Suppose now that
Ls(g) '# 0 for some a < g < XI' Let

sex) = {Sex), XI < X <, b,
u(x), a<,x<,xl>

where u(x) EN satisfies U(J)(XI) = SJ(XI), 0 <,j <, m - 1. Then SE.Yf'2m and
f (LS)2 < f (LS)2. But since AiS = AiSfor all Ai E A, this contradicts the fact that
s minimizes (1.2). A similar proof holds for the interval (x",b).

We now suppose that X E (a,b) and thats is an Lg-spline interpolating EHB
data. If E> 0 is sufficiently small and g E U(O) n Cc"'(x - E, X+ E), then
integrating (2.1) by parts gives

(3.1)

where

and the notation [·]x is defined by [~]x = ~(x+) - ~(x-). A relation ana­
logous to (3.1) also holds for the points a and b, with [~]a = ~(a+) and [<!>]b =

-<!>(b-).
To facilitate the characterization of splines interpolating EHB data, it is

convenient to rearrange (3.1). Let ex = (ocij)tA ,m-I, l <, m, be of rank l, and let a:
3
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be an m x m nonsingular matrix obtained by augmenting IX. We denote by
1] = (1]ii) the inverse of the adjoint of &. The proof of the following lemma is
trivial.

LEMMA 3.1. Let

m-I (d)i
M i = 2: &ij dx

J=O

Then

and

m-l m-l

2 g(i)(X)[OiS]x = 2 Mig(x)[Ris]x
i~O i~O

for all g E:/t'2m and s E.9.

(3.2)

THEOREM 3.2. Suppose s is an Lg-spline interpolating {rih n with respect to
A = {Aihn, where A generates an EHB interpolation problem. In particular,
suppose x E [a, b] is a knot of s and that there are lex) linear functionals in A
which involve some derivatives ofs at x, ofthe form

m-I

MIx) sex) = 2 IXij(X) sU>(x),
i~O

O<i<l(x)-I, (3.3)

where {IXi = (IXi,O' ... , IXi,m_I)}~(x)-1 are assumed to be linearly independent. Then

[R~X)s]x=O, l(x)<J<m-l, (3.4)

where the R~X) are defined as in Lemma 3.1.

Proof Assume x E (a,b) and fixj,l(x) <.i < m - 1. Choose € > 0 such that x
is the only knot of s in the interval (x - €, X + €). It is easily seen that there
exists a function g E Cc"'(x - €, X+ €) satisfying g = &-1 Ii> where I j is the jth
column of the m x m unit matrix and g = (g(x), "', g(m-l)(x))T.

By construction M~X)g(x) = Oii> 0 < i < m - 1, and g E U(O). Now combin­
ing (3.1) and (3.2) yields 0 = [R~X)s]x. The cases when lea) > 0 or l(b) > 0 are
handled similarly.

We note that since s E cm-I,

([Om-IS]x, ..., [OOS]x)T = g([s<m)L, ..., [s(2m-I)]x)T,

where g is lower triangular with ±am2(x) on the main diagonal. Since

([R~X) s]x, ... , [R~~I S]x)T = 1]([Oos]x, ..., [Om-I s]x)T,

it follows that the equations (3.4) represent m -lex) linearly independent
relations among the ([s(j)]x};,m-I at the point x. The choice of the augmenta­
tion & of IX in Lemma 3.1 is not critical inasmuch as any two choices lead to
equivalent sets of m -lex) linearly independent relations.
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The following corollary is an easy consequence of either Theorem 3.2 or its
proof.

COROLLARY 3.3. Suppose s is an Lg-spline corresponding to an HB inter­
polation problem. If the lth derivative (0 < I < m - 1) evaluated at the knot x is
not involved in the HB data, then [OIS]x = o.

COROLLARY 3.4. Suppose s is an Lg-spline corresponding to an HB inter­
polationproblem, andsuppose v denotes the order of the highest derivative speci­
fied at a knot x E (a, b). Then [sW]x = Ofor 0 <j < 2m - 2 - v.

Proof Since SEem-I, it follows trivially that [s(J)]x = 0 for 0 <j < m - L
Now suppose the conclusion is valid for allj satisfying 0 <j <p < 2m - 2 - v.

In view of the assumption that the highest derivative specified at x is of order P,

we deduce that the 2m - p - 2nd is not involved. Hence by Corollary 3.3
p-m+1

0= [OZm-p-Zs]x = L (_l)i+l [(aj+Zm-p-l Ls)(J)]x­
j~O

Using Leibnitz's rule and the inductive assumption [s(J)]x = 0 for 0 <j <p,
this reduces to 0= (-ly-m[amZs(P+I)]x, and the assertion follows since
an,z(x) 01= O.

In the special case that L = (d/dx)m, the Lg-spline interpolating HB data is
called a g-spline (see [16]). We have

COROLLARY 3.5. Let s be a g-spline interpolating HB data, and suppose the lth
derivative (0 < 1< m - 1) is not specified at a knot x. Then [s(Zm-l-l]x = O.

Proof By Corollary 3.3,

But for L = (djdx)m we have aj == 0, 0 <j < m - 1, and hence this reduces to
0= (_l)m-I [s(2m-I-I)]x'

We close this section with the following characterization theorem.

THEOREM 3.6. Let s be an Lg-spline interpolating EHB data {rih n with respect
to {Alh n. Then

L*Ls(x) = 0 ifx is not a knot, and x E (a, b).

AiS =rl l<i<n.

[R~x)s]x = 0 lex) < i < m - 1, ifx is a knot.

Ls(x) =0 fora<x<xl andxk<x<b.

(3.5a)

(3.Sb)

(3.5e)

(3.Sd)
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Conversely, any function s E:Ye2msatisfying (3.5) is an Lg-spline interpolating
{rth" with respect to {Ath". In particular, if the EHB interpolation problem is
poised then (3.5) uniquely characterizes the spline.

Proof. The direct implications have already been established above. By
Theorem 2.1, the converse follows immediately from the easily verifiable
relation

f: Ls(Ls - Lf) = 0, foranyfE U(r).

(4.1)

In the case of natural Lg-splines interpolating EHB data, Theorem 3.6 holds
with a = -00 and b = +00 in (3.5d).

4. A BASIS FOR L!/

In this section we derive a basis for the spaceL!/ which leads to a method for
the computation ofLg-splines involving the inversion of a positive definite m­
banded matrix. This is of more than academic interest inasmuch as the usual
bases for splines frequently lead to ill-conditioned systems of equations with
full matrices (cf. [3], [9]). The analysis is similar to that in [3], and in the
development we obtain a number oflemmas of independent interest.

As remarked in §2, the L of(1.1) is a bounded linear operator from:Ye2m(a, b)
onto !l'2(a,b). Let P be the adjoint operator from !l'2(a,b) into :Ye2m(a,b),
defined by

(Ly,X).fl'2 = (y,L" X).Yt'2m.

By the closed range theorem (see [18], page 205),

R(L") = R(L") = NL.l.. and NLa = (R(L)).l.. = (0). (4.2)

Thus (L")-1 also exists.
Throughout the remainder of this section we assume that A = {Ath"

consists of linear functionals on :Ye2min the class !l'(m) defined in §3, and that
N n U(O) = (0).

LEMMA 4.1. N n U(0) = (0) ifandonly ifthere exists a subsequence {Ath mofA
which is linearly independent over N.

Proof. Suppose {Athmis linearly independent over N, and let u EN n U(O).
Then U= 'LT YjUj for some {Yjhm, and

m

0= AtU = 'L yjAtUj>
j=1

1 <,.i<,.m.

By the assumption of the linear independence, the matrix( Atuj)T:r is non­
singular, and hence Yj = 0, 1 <,.j <,. m, i.e., U == O.
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Conversely, suppose no m A's in A are linearly independent over N, i.e., the
matrix A = (A;uj)7:T has rank less than m. Then the mapping A:Em ~ E"
possesses a non-trivial vector Y= (Yl> ... , Ym) in its null space. But then
u = 2:f=1 Y;u; EN n U(O), and U ¢:O.

In the remainder of this section we shall use a slightly different inner product
for :Yr2

m which is equivalent to the one defined in §1. Namely, we set

(f, g).n'2m = ;~ Xi f Xi g + f: LfLgdx, (4.3)

where {Xih m is linearly independent over N, as in Lemma 4.1. By the Riesz
representation theorem, there exist functions k j E :Yr2

m such that

Ajf= (f,kJ.n'2m, 1 <,j <, n.

LEMMA 4.2. {k)l n forms a basis for f/.

Proof To show that k j E f/, we show that it satisfies (1.2) with r/ ~ Aikjo
I <, i <, n. If ¢ E U(r) with r = (rio"" rn), then

0= Ai¢ - k j) = (¢ - kj,kJ.n'2m.

But by the definition of the inner product, this yields

and thus by Theorem 2.1, k j E f/.
As remarked at the end of §2, the assumption of poisedness assures that

dimf/ = n, and thus the proof will be completed by establishing that {kjhn is
linearly independent. Suppose 2:j=1 yjkj == O. Then if 81> 82' ..., Sn are the
fundamental splines of (2.2),

n

0= 2: yik j,8i).n'2m = Yi'
j=1

LEMMA 4.3. :Yr2
m = f/ EB U(O).

Proof Since f/ is finite dimensional, it suffices to show that U(O) = f/1-. By
(2.1), clearly U(O) c f/.L. On the other hand, iff E f/.L, then by Lemma 4.2,

1 <, i <, n,
Le.f E U(O).

A simple corollary of the above lemma is the fact that for anyf E:Yr2m, the
function 8 E f/ obtained by projectingf onto f/ satisfies (1.2) with ri = Ad,
1 <, i <, n.
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LEMMA 4.4. (L:7.L).1 =L:7.

Proof By Lemma 4.3, :7.1 = U(O) and so L:7 c (L:7.1).1 follows trivially
from (2.1). Conversely, iff E (LU(O».1, then 0 = f fLg for every g E U(O). Let
1E .lit'2m be such that LI= f Then

o= I LILg = (g,J).7f2 m,

since g E U(O). This asserts thatlE U(O).1 =:7, and thusf EL:7.

LEMMA4.5.LaL:7=N.1 n:7.

Proof Supposey E LaL:7, Le.,y =Lax,x E L:7 = (L:7.1).1. By the definition
(4.1) ofLa, we have x E(L:7.1).1 if and only ifL"x E:7. Therefore y E:7, and
since y E R(La) = N.1, we have shown that LaL:7 cN.1 n :7. For the con­
verse, suppose yEN.1 n :7, i.e., y ER(La) n :7. Then y = L"x E:7 and as
noted above x EL:7, i.e., y ELaL:7.

It is now convenient to introduce a function D(g,x) such that every f E .lIt'2m

has a representation

(4.4)

Following [8], let W(x) = (uy-1)(x»T;r' be the Wronskian matrix of the
functions {uih m which span N. The assumptions on L assure that IW(x) I =F 0
for x E [a,b]. Define B(g,x) = u(g)[W(X)]-1 1m, where u(g) = (Ul(g), ..., um(m,
and 1m is the last column of the unit matrix of order m. Then the function

D(g, x) = {B(g, x) for g > x,
o for g.;;;x,

leads to (4.4) (cf. [8]). For example, in the special case L = (djdx)m, we have
D(g,x) = (g - XY:~-I, and (4.4) is just Taylor's formula with integral remainder.
For later reference we remark that although D(· ,x) ¢ .lIt'2m, nevertheless
Ai D( .,x) is well defined for almost all x E [a, b] if Ai E !f(m).

Before exhibiting a basis for L!7, we establish the existence of vectors
fJj":'; (fJjb .• ", fJjn), 1 .;;;j.;;; n - m, satisfying

{fJj}~-m is linearly independent, (4.5a)

n

L fJji A; Ul = 0,
;=1

l.;;;/.;;;m, l.;;;j.;;;n-m. (4.5b)

To accomplish this, consider the mapping AT :En '-+ Em defined by the matrix
A = (A;UI)~',"t. By the poisedness assumption, A is of rank m, and hence there
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exist linearly independent vectors f3j E En, j = 1,2, ... , n - m, which span its
null space, Le., satisfy (4.5).

THEOREM 4.6. The functions

n ,0-

Jj(x) = I f3ji A;lJ(·,x)
i=1

form a basis for L[/'.

Proof First we notice that

1<.j<.n-m (4.6)

dim(L[/')=dim«U)-l(N1- n [/,»=dim(N1- n [/'),

by Lemma 4.5 and the fact that (U)-I exists, Moreover,

dim(N1- n [/') = dime[/') + dim(N n [/'1-) - dim(N).

But N n [/'1- = (0), inasmuch as N c [/', and since dime[/') = n, it follows that
dim(L[/,) = n - m.

To show thatJj E L[/', it suffices to establish UJj E U LY = ."fill- n [/'. By
(4.1) and (4.5b),

for 1> E U(O). (Here we have relied on a standard application of Fubini's
theorem, yielding (Ai~' L1>}fi'2 = Ai(~,L1>}fi'2). Hence Ufj E U(O)1- = [/'. On the
other hand,

if if! EN, Le., Lafj E N1- also.
Finally, we verify the linear independence of{Ji}7-m• Suppose Ii:T yJj == o.

Then ifSi is the spline satisfying (2.2),

n-m n-m n ~

0= I ylJi,Lsz}fi'2 = I Yj I f3ji Ai(8,Lsz).'l'z
j~l j=1 i=1

n-m n n-m
= I Yj I {3ji[AiSZ+,\1>Z)= I Yj{3jZ,

j-I i=1 j=1
1 <. 1<. n.

In view of(4.5a), the matrix ({3jz)r:'i',n is of rank n - m and hence this implies
yj=O, 1<.j<.n-m.

By virtue of the above theorem, any Lg-spline interpolating {rih n with
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respect to {,\;h n= 11 c !p(m), satisfies Ls(x) = 2.t::1' CiJi(X), where {ciH-m is
uniquely determined by the system of equations

n-m
L Ci(Ji,fj}Z2 = (LS,fj}Z2 = (f3j, r)12'
i=1

1<j<n-m, (4.7)

since the Grammian det(Ji,fj) l' O. The inner product (Ji,fj) is given by

n n A,' 4

(Ji,fj)Z2 = 2. L f3iv f3j/l(Av()(', x), A/l ()(', X»Z2' (4.8)
v=1 /l=1

Finally, by (4.4) and the above representation ofLs,
n-m ~ m

s(x) = L c;(()(x,Y),Ji(Y»Z2 + 2. qi Ui(X),
i=1 i=1

where {q ih m is uniquely determined from the system
m n-m

2.qi Aj Ui=Fj - L Ci A/ b,f)Z2' l<j<m, (4.9)
i=1 i=1

where {A)lm is as in Lemma 4.1, and {Fjh m is the corresponding sequence of
prescribed values.

It is important to notice that the basis {fjH-m for L!7 defined in (4.6) depends
on the choice of {f3j}~-m. In general, the matrix of the system (4.7) will not be
m-banded. However, we shall now show that the f3/s can be chosen to satisfy
(4.5) and to yield a sparse matrix in (4.7). First we notice that

n n

(Ji,fj)Z2 = 2. L f3iv f3j/l(Pv, P/l)Z2'
v=1 /l=1

= f3iPf3/,

where P= (Pij) = ((Pi,Pj)Z2) and Pi(X) = Ai b( " x). Since P is the Grammian of
{Pihn, it is nonnegative definite. By (4.6), L!7 is contained in the span of
{pih n, and hence the rank r of P is at least n - m. It follows that the null space
Np of P has dimension n - r < m. We conclude that P defines a pseudo-inner
product

(x,Y)p = xpyT
, x = (XI> ..., xn), Y = (YI> ..., Yn),

for which (x, x)p = 0 ifand only ifx E Np, i.e., the set of vectors in En with zero
p-Iength is ofdimension at most n '- r ~ m.

THEOREM 4.7. There exists a {f3i*}1-msatisfying (4.5), with

(f3/,f3i*)p = (f3i*,f3/)p = 0, i l' j, 1< i < n - 2m, 1 <j< n - m.
(4.10)

Then ((Ji,fj)Z2) consists ofthe identity matrix oforder n - 2m in the upper left­
hand corner, an m x m matrix in the lower right-hand corner and otherwise
possesses zero elements.
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Proof We observe that the result is immediate if n - m,,;;; m. Suppose now
that n - m > m. Let {f3iH-m satisfy (4.5). We now proceed by induction to
obtain {f3i*H-m with the property (4.10). Since {f3iH-m is linearly independent
there exists a f3j, say f3b of nonzero p-length. Then we may take

f31* = f3dV(f3b f31)p'
Suppose now that f31*' ..., f3i*' i < r - m, have been obtained by ortho­

normalizingf3b ... , f3i' We now selectf3:+I' Consider

{f3j - vt/v*(f3/,f3j){~:I'
which is easily seen to be linearly independent. Now since n - m - i > n - r, at
least one of these vectors, say

* A ... /h. A

has nonzero p-length. Then we take f3i+l = {3i+1/v ({3i+b {3i+1)p'
Assume now that {f3j*}'i-mhas been obtained by orthonormalizing {f3j}'i-m.

Then we choose

r - m + I <j,,;;; n - m.

i=O,l, ...,l(x)-l,

It is easily verified that this inductive choice of {f3i*}1-m satisfies the theorem.

5. INTERPOLATION ON INFINITE SETS

In this section we shall consider a generalized interpolation problem on
arbitrary closed sets B of 9t as in [7]. Indeed, let {M~X)}:~6-1be a collection of
operators defined for each x E B, with I ,,;;; lex) ,,;;; m, where m is the order ofthe
differential operator of (1.1) and

m-I (d)k
MlX) = L OI:ik(X) -d '

k~O x

with M~X)4>(x) = 4>(x). It is assumed that, for each x, {M~x)}l~J-1 is a linearly
independent sequence of rank lex), i.e., the lex) vectors O!i(X) = (O!ik(X) are
linearlyindependent. Foreach x E B, the sequence {M~X)}I~J-I can be augmented
to form a sequence {M~X)}r~-d of rank m as in Lemma 3.1. Let {RlX)}r:-ol be the
sequence of operators defined there. Then for each x E B - B', where B'
denotes the set oflimit points ofB,

f LuL4> = f L*Lu'4> + ~~I M~X)4>(x)[RlX)u]x, (5.1)
J J ,-0

where J is any interval such that J n B = {x}, if> is an arbitrary function in
Ccro(J), and U E C 2m(J - {x}).



42 JEROME AND SCHUMAKER

(5.2a)

x E B, (5.2b)

(5.2c)

We seek a solution to the generalized interpolation problem:

L *LF(x) = 0 x E 9t - B

M~X) F(x) = M~x)f(x) i = 0, I, ... , l(x) -1,

FE dPL
m(9t) n dPr:c(9t - B) n .@B,

wherefis any prescribed function in dPLm(9t), and

dPi':,C<9t) = {u:u(m-l) is locally absolutely continuous with u(m) locally square
integrable},

dPL
m(9t) = {u EdPi':,c(9t): Lu EY 2(9t)},

.@B={U EdPL
m(9t) ndPr:c(9t - B): [R~X)u]x = 0, x EB-B', and

i = l(x), ... , m - I}.

There exists a solution to the interpolation problem (5.2) which is unique
under additional hypotheses. This result slightly generalizes results in [7] and
the proof will not be duplicated. The approach is to consider a minimization
problem in dPL m(9t), as in §2, over a closed flat defined by (5.2b), and to identify
the solution ofthe minimization problem with the solution of(5.2) through the
use of (5.1). Any two solutions of (5.2) differ by a null solution for L in the
special case that the problem:

L*F(x)=O X E 9t-B'
(5.3)

FEYi9t),

has only the identically zero solution. In this case we shall say that L satisfies
property (5.3). Then the solution of (5.2) is unique if any null solution for L,
which satisfies (5.2b) homogeneously, must be identically zero, which is true if
N L is spanned by a Tchebycheff system, and B contains at least m points.

It is well to point out that for any x E B' the values j<k)(X), k = 1,2, ...,
m - 1, are determined by the values off on B in a neighborhood of x, if
fE dPL

m(9t). Thus, the operators M~X), 0 < i <: l(x) - I, are significant only for
x E B - B'. We summarize the preceding discussion in

THEOREM 5. I. There exists a real-valued function satisfying (5.2). IfL has
property (5.3), then any two functions satisfying (5.2) differ by a null solution for
L. Finally, ifN L is spanned by a Tchebycheff system, and L has property (5.3),
then (5.2) has a unique solution.

IfL has property (5.3) then any solution of (5.2) minimizes the expression

min IILFllz2' (5.4)
Fe'"
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where Ol/ is the flat defined by

Ol/ ={F E£'Lm(~):M~X)F(x) = M~X)f(x), 'if x E B}.

In this case, consistent with our earlier terminology, we may call any solution of
(5.4) an Lg-spline with a characterization described by (5.2). In particular, the
operator L = (djdx)m has property (5.3) and, in addition, the monomials 1,
x, ... , xm- 1 form aTchebycheffsystem so that in this case the unique Lg-spline
satisfying (5.4) is uniquely characterized by (5.2). The special case when B is
compact merits consideration; say, -00 < a = minXEBx and b = maxXEBx < 00.

In this case, if the condition

LF(x) = 0 for x < a and x > b (5.2d)

is satisfied, then (5.2) is equivalent to (5.4) without the additional hypothesis
that L has property (5.3). We then say that F is a natural Lg-spline, which is
clearly consistent with our earlier terminology if B is a finite point set.

Finally, if L has property (5.3) and NL is spanned by a Tchebycheff system
then the Lg-spline characterized by (5.2) can be approximated by splines with
finitely many knots. Indeed, let

X ={xj, X2, ••• }

be a sequence dense in B and consider the truncations

Xn = {Xll ..., xn}.

From previous results, the interpolation problem:

L* Lsix) = 0 x E ~ - Xm

M;six) = Md(x) 0 < i < lex) -1, x E Xm (5.5)

Sn E£'Lm(~) n £'l~(~ - Xn) n f!Jxn,

has a unique solution for n ;;;, m. Then, as in [7], we now have

THEOREM 5.2. If L has property (5.3) and N L is spanned by a Tchebycheff
system, then Sn ---7- Fin £'Lm(~), where F uniquely solves (5.2a, b, c). In particular
S~k) converges uniformly to F(k) on compact subsets oflJifor 0 < k < m - L

In the special case that B is compact, the sequence Sn of (5.5) satisfying
Lsix)=Oifx<minxExnxor x>maxXEXnx, converges to the unique solution of
(5.2a, b, c, d) as in the above theorem, without the assumption that L has
property (5.3).

6. ApPROXIMATION OF LINEAR FUNCTIONALS

Let !f>(m) be the class of linear functionals defined in §3. We now consider the
problem of approximating a linear functional Ao E !f>(m) by a linear combin··
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ation of {Aih nc 2(m) in the sense of Sard (cf. (13], [14]). For a; = (a;J, ••• , a;n),
set

n

R(a;) = AO - L a;iAi'
i=1

Then for allf E .Yf'zm, (4.4) yields

R(a;)f= Rif; +J: K(a;,x)Lf(x)dx,

where if; E NL and K(a;,x) = R(a;){}(· ,x).

(6.1)

THEOREM 6.1. Let {Aih nc 2(m) be such that N n D(O) = (0) and let SJ,Sz, ...,
Sn be the Lg-splines satisfying AiSj = Sij' Then among all a; such that R(a;) annihi­
lates N, the minimum of

J: [K(a;, x)]2 dx

is uniquely attainedfor a;* given by

(6.2)

1 <; i <;n,

i.e., L7=1 a;i* Ai is the best approximation to AO in the sense ofSard. Moreover,for
each f E .Yf'zm,

[i a;i*Ai]f=AOS,
i=1

where Sis the Lg-spline interpolating

ri = Ad, 1 <; i <; n. (6.3)

Proof. First we notice that R(a;*)s = 0 for every S E /7. Indeed, R(a;*)
annihilates the basis {sjh nof/7, as is easily seen from the relation

n

R(a;*)sj = AoSj - L (AiSj) AoSi = AoSj - AOSj = O.
i=1

Next we show that LI(·) = K(a;*,) - K(a;,·) EL/7, whenever R(a;) anni­
hilates N. By Theorem 2.1, it suffices to show that

But

f: LI(x)Lg(x)dx = 0 for every g E D(O).

fb n Jb.
a L1(x) Lg(x) dx = i~ (a;i - a;;*)Ai a (J(., x)Lg(x)dx

n

= L (a;i-a;j*)Ai(g+p) =0,
i=1

since pEN and g E D(O).
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Now let S E [/' be such that Ls = .1. Then by (6.1),

0= R(o.:*)s = f: K(o.:*,x)Ls(x)dx

= f: K(o.:*,x)[K(o.:*,x) - K(o.:, x)] dx,

45

which implies that

f: (K(o.:,X»2dx = f: (K(0.:*,X»2dx + f: [K(o.:,x) - K(IX*,x)fdx, (6.4)

i.e., K(o.:*,·) minimizes (6.2). We now show that a* is unique. If IX minimizes
(6.2), then by (6.4), K(o.:*,x) - K(IX,x) = 0 a.e., and we obtain for each
1<,j <, n,

n

= 2: (lXi - lXi*) Ai(Sj +p) = IXj - 0.:/, i.e., IX = IX*.
1=1

This completes the proof, since the last statement of the theorem is evident.
Alternately, one may consider the problem (cf. [5])

(6.5)

Clearly the minimum is uniquely attained by the linear functional Xcorrespond­
ing to the representer Pko obtained by projecting the representer ko of Ao onto
[/', i.e., V= (f,PkO).YI'2m. But by the simple properties of projection operators
we have

Xi= (f,PkO);;-f2m= (Pf,kO)Jf2m = Aos,

where s is the spline interpolating f as in (6.3). It follows that A is the best
approximation of Ao in the sense of Sardo

7. INEQUALITY CONSTRAINTS

The preceding theory is capable ofeven further generalization. In particular,
we shall consider the following minimization problem, where L,:Yl'2mand A are
as in §l, and! = (fl' ... , fn), f = (fI, ... , f n) E E" with! <, f:

IILsll2'2 = min IILfli2'2'
fEOU(~,r) (7.1)

OII(r, f) = {fE:Yl'2m
: rj";, Ad<, f j , I <,j <, n}.

We shall show below that (7.1) admits of a solution which may be called an
Lg-spline interpolating (r, 1') with respect to A. We also derive a characteriz­
ation theorem for s, similar to Theorem 3.6. Recently, Ritter [12] employed
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quadratic programming methods to investigate the minimization problem
(7.1) in the special case when L = (djdx)m and .A corresponds to Hermite­
Birkhoff type linear functionals. By the use of the variational approach, this
section readily provides extensions of his work in several directions.

We now state

THEOREM 7.1. There exists an s E Ye2msatisfying (7.1). A function s E ~(r, f)
solves (7.1), ifand only if

f: LsLg.;;; 0 for all g E ~(s,r,f), (7.2)

where ~(s, r, f) = {s - f:f E ~(r, f}. Moreover, any two solutions differ by a
nullfunction in N, ands is the unique solution of(7.1) ifand only if

N n ~(s, r, f) = (0). (7.3)

In particular, N n ~(r - f, f - r) = (0) implies that (7.1) has a unique solution.

Proof. For the existence of s it suffices to show that L~(r, f) is a closed,
convex subset of2 2 , The convexity is obvious. Since the intersection ofclosed
sets is closed, we need only show that the images under L ofthe sets

Vi = {jEYe2m: AJ.;;; f i}, Wi = {jEYe2m: AJ>ri}

are closed for 1.;;; i.;;; n. To this end we show that the complement (LViY of
LVi in22 is open. The closedness ofLWi follows in the same way. SinceL maps
Ye2monto 2 2 , an arbitrary element of (LViY may be written in the form Lg,
whereg E V{. We have

where

Since (LYiY is open (see §2), there exists a ball Bi about Lg, entirely contained
within (LYiY. We claimBi n LVi = 0. Indeed,supposeLh E Bi n LV;, where
hE Vi' Since Ai g > f i and Aih.;;; f i, it follows that c = (fi - Aih)j(Ai g - A/h)
satisfies 0 .;;; c < 1, and thus, by the convexity of Bi and the definition of c,

cLg+ (1- c)Lh E Bi n LY/

which is a contradiction. It follows that (LViY is open.
The necessity of (7.2) is the usual convexity inequality satisfied by pro­

jections in Hilbert space. Conversely, if the quasi-orthogonality relation (7.2)
holds, then for anyf E ~(r, f),

f: (Lf)2 - f: (LS)2 = f: (Lf - LS)2 + 2 f: Ls(Lf- Ls) > 0,

i.e., s solves (7.1).
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We now show that the difference ofany two solutions sands of(7.1)is in N.
Indeed,

0", f: (Ls - LS)2 = f: Ls(Ls - LS) + f: LS(LS - Ls) '" O.

Condition (7.3) is clearly necessary for the uniqueness ofs. Conversely, suppose
sand s are two solutions of (7.1) and suppose (7.3) is satisfied. Then

s - SEN n cJll(s,r, f),

and hence s = S. The final assertion of the theorem is obvious.
We remark that any solution s of(7.1) is a solution of(I.2) with

D(r) = {fE.?f'2
m

: 'Ad= 'Ais, 1", i '" n},

and thus, in particular, is an Lg-spline. Moreover, ifr = f then (7.1) reduces to
(1.2), and hence the class of all solutions of (7.1) as r'" f ranges over E"
coincides with the class Y' ofsolutions of(I.2) as r varies inE".

We now derive a characterization theorem for Lg-splines interpolating
(r, f) with respect to 11, where 11 consists of EHB-type linear functionals (see
§3). In particular, let a '" Xl < ... < Xk '" b be prescribed knots, and let Mf"J),
0", i '" l(xj) - 1, be the linear functionals in 11 of the form (3.3) involving
derivatives evaluated at Xj' As in §3 we augment these to obtain sequences
{MlXj)}31

-
1• Let RlXj) be defined from the MlXj) as in Lemma 3.1.

THEOREM 7.2. Let s E cJll(r, f). Then s satisfies (7.1) ifand only if(3.5) holds and

[RlXj)s]Xj'" 0

[RlXJ)s]Xj;> 0

[RlXj) s ]Xj = 0

forO",i",l(x j )-I, 1",j",k.

if MlXj) s(xj) > rio
if MlXj) s(Xj) < f i ,

ifri < MlXj) s(Xj) < ii'

(7.4a)

(7.4b)

(7.4c)

Proof Since any solution s of (7.1) must be an Lg-spline interpolating
{'Aish" with respect to 11, it is clear that conditions (3.5) must be satisfied.
Assume now that MlXj) s(Xj) < f i for some 0 '" i '" l(xj) - 1. As in the proof of
Theorem 3.2 we construct g E Cc'~)(Xj - E, Xj + E) such that

[g(Xj), ..•, g(m-I)(Xj)]T =

&-I(xJ[MJXj)s(Xj), .. .Ml~l s(xj), f i , MWl s(xj), ... , M~~)l s(xj)f,

where &(Xj) is the matrix defining the {MlXj)};;,-1 as in Lemma 3.1. Now if
1 <j < k we construct hE Ceo so that

(

1 t '" Xj_l + (Xj - xj_I)/4,
h(t) = 0

1
x j - (xj - xj_I)/4 '" t '" Xj + (Xi+l - xj)/4,
t;> Xi+1 - (Xi+l - x j)/4,
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with a similar definition forj = I andj = k. Then by construction

f(t) =g(t) + h(t)s(t) E OII(f,f),

and

M~xJ.')f(x/l) = M~XI') s(x/l) for all 0.;;; v.;;; m - 1,1.;;; p,.;;; k, except when

v =:= i and p, = j,

M~XJ)f(Xj)= fj.

Now, integrating by parts as in §3 yields

Ib k m-J

0> aLs(Ls-Lf) = /l~J v~ M~XI')(s-f)(x/l)[R~XI')s]xl'

= M~XJ)(s - f) (xj)[mXJ)s]xJ = {M~XJ) s(x) - fj}[R~XJ) s]xj'

and (7.4b) follows. In a similar manner M~XJ)S(X»fj implies [R~XJ)s]xJ';;;O,

while finally, condition (7.4c) is an immediate consequence of (7.4a, b).
For the converse, supposefE OII(f, f). Then

Ib k m-J

aLs(Ls - Lf) = /l~ v~o M~XI')(s - f)(x/l)[R~XI') s]XI'

k l(XI')-J

= L L M~XI')(s - f)(x/l)[R~XI') s]XI"
/l=1 v=O

since [R~XI')s]xl' = 0 for l(x/l)';;; i.;;; m -1, by (3.5). Moreover, if
M~xJ.')(s- f)(x/l) > 0 then M~XI')s(x/l) > M~XI')f(x/l) >fl and by (7.4a)
[R~XI')s]xl'';;; 0, 0.;;; i.;;; l(x/l) - 1. Similarly, M~XI')(s - f)(x/l) < 0 assures
[R~xJ.')s]XI' > 0 and therefore

I: Ls(Ls - Lf) .;;; 0,

so that by Theorem 7.1, s is an Lg-spline interpolating OII(f, f) with respect to A.
Various corollaries analogous to those in §3 may be obtained by specializing

either A or the operator L. We cite only the following result for g.splines (cf.
[12]).

(7.5a)

(7.5b)

if the ith derivative is not specified at the knot x
or iffl < s(i)(x) < fj, (7.5c)

ifs(i)(x) = fj at the knot x, (7.5d)

ifs(i)(x) = f j at the knot x. (7.5e)

s(m)(X) = 0

[s(2m-J-I)]x = 0

(_I)m-I[S(2m-l-i)]x > 0

(_l)m-l[s(2m-l-I)]x';;; 0

COROLLARY 7.3. Let L = (djdx)m and suppose A consists of HB-type linear
functionals. Then s E OII(f, f) is a solution of(7.1) ifand only ifit satisfies

s(2m)(x) = 0 ifx is not a knot,
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